Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task.

نویسندگان

  • Brian Coe
  • Kazuya Tomihara
  • Masako Matsuzawa
  • Okihide Hikosaka
چکیده

To examine the role of three cortical eye fields during internally guided decision-making processes, we recorded neuronal activities in the frontal eye field (FEF), supplementary eye field (SEF), and lateral intraparietal cortex (LIP) using a free-choice delayed saccade task with two synchronized targets. Although the monkeys must perform the task in a time-locked manner, they were free to choose either the receptive field (RF) target or the nonreceptive field (nRF) target to receive reward. In all three areas we found neurons with stronger activation during trials when the monkey was going to make a saccade to the RF target (RF trials) than to the nRF target (nRF trials). Modulation occurred not only during target presentation (visual bias) but also before target presentation (anticipatory bias). The visual bias was evident as an attenuated visual response to the RF stimulus in nRF trials. The anticipatory bias, however, was seen as an enhancement of pretarget activity in the RF trials. We analyzed the activity during the 500 msec before target presentation and found that 22.5% of FEF and 31.3% of LIP neurons and 49.1% of SEF neurons showed higher activity during the RF trials. To more accurately determine when each neuron started to show preferential activity, we used a new inverse interspike interval analysis procedure. Our results suggest that although all three cortical eye fields reflect attentional and intentional aspects of sensorimotor processing, SEF plays an earlier and perhaps more cognitive role in internally guided decision-making processes for saccades.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reward-Dependent Gain and Bias of Visual Responses in Primate Superior Colliculus

Eye movements are often influenced by expectation of reward. Using a memory-guided saccade task with an asymmetric reward schedule, we show that visual responses of monkey SC neurons increase when the visual stimulus indicates an upcoming reward. The increase occurred in two distinct manners: (1) reactively, as an increase in the gain of the visual response when the stimulus indicated an upcomi...

متن کامل

Visual attention to the Logos of Popular and Unknown Brands: An Eye-tracking Study during Decision-making

A logo epitomizes a brand and depicts the picture of a product; consequently, attention, as an initial step of the AIDA model, to the logo is a good-looking index to survey the cognitive processing during consumers’ decision-making. Eye tracker extracts the visual attention data. For these reasons and appreciated from fixation duration, in the present study, the process of visual attention to t...

متن کامل

Primate frontal eye fields. I. Single neurons discharging before saccades.

We studied the activity of single neurons in the frontal eye fields of awake macaque monkeys trained to perform several oculomotor tasks. Fifty-four percent of neurons discharged before visually guided saccades. Three different types of presaccadic activity were observed: visual, movement, and anticipatory. Visual activity occurred in response to visual stimuli whether or not the monkey made sa...

متن کامل

Patients with chronic pain lack somatic markers during decision-making

Patients with chronic pain have impaired cognitive functions, including decision making, as shown with the Iowa gambling task (IGT). The main aim of this study was to elucidate whether patients' decision making is associated with a lack of the anticipatory skin conductance response (SCR). An increase in anticipatory SCR before making unfavorable choices is known to guide decisions in healthy co...

متن کامل

Neural correlates of perceptual decision making before, during, and after decision commitment in monkey frontal eye field.

Perceptual decision making requires a complex set of computations to implement, evaluate, and adjust the conversion of sensory input into a categorical judgment. Little is known about how the specific underlying computations are distributed across and within different brain regions. Using a reaction-time (RT) motion direction-discrimination task, we show that a unique combination of decision-re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2002